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Abstract
An analytical variational method is applied to the molecular Holstein
Hamiltonian in which the dispersive features of the dimension dependent
phonon spectrum are taken into account by a force constant approach. The
crossover between a large and a small size polaron is monitored, in one, two and
three dimensions and for different values of the adiabatic parameter, through the
behaviour of the effective mass as a function of the electron–phonon coupling.
By increasing the strength of the intermolecular forces the crossover becomes
smoother and occurs at higher e–ph couplings. These effects are more evident
in three dimensions. We show that our modified Lang–Firsov method starts to
capture the occurrence of a polaron self-trapping transition when the electron
energies become of order of the phonon energies. The self-trapping event
persists in the fully adiabatic regime. At the crossover we estimate polaron
effective masses of order ∼5–40 times the bare band mass according to the
dimensionality and the value of the adiabatic parameter. Modified Lang–Firsov
polaron masses are substantially reduced in two and three dimensions. There
is no self-trapping in the antiadiabatic regime.

1. Introduction

There has been a growing interest in polarons over the last years, partly in view of the
technological potential of polymers and organic molecules [1, 2] in which polaronic properties
have been envisaged. Theoretical investigations on polarons generally start from the Holstein
Hamiltonian [3] originally proposed for a diatomic molecular chain along which hopping of
electrons, linearly coupled to the vibrational quanta, takes place according to a tight-binding
description. If the local e–ph coupling is sufficiently strong, the induced lattice deformation
may dress the electron and transform it into a polaronic charge carrier [4, 5]. The conditions
for polaron formation and its mobility properties may, however, also depend on the adiabaticity
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ratio, on dimensionality, and on peculiarities and anharmonicities of the lattice structure [6–
15]. As the Holstein Hamiltonian can be identically applied to states made of excitons [16, 17]
and phonons it also provides a useful tool in optical spectra analysis and transport properties
of organic materials [18, 19] with large scale applications.

While the physical properties of polaronic systems change [20, 21] according to the size
of the polaronic quasiparticle, a number of theoretical tools [22–26] have been applied to
clarify the nature and width of the crossover between a large (with respect to the lattice
constant) polaron at weak e–ph coupling and a small polaron at strong coupling for a given
value of the adiabatic parameter. Provided that a phase transition is ruled out in the Holstein
Hamiltonian with dispersive optical phonons [27] being the ground state energy analytic in
the e–ph coupling, such a crossover may still appear as a smooth transition in the antiadiabatic
regime, or rather as a sudden (but continuous) event in the adiabatic regime [28]. While
the narrowing of the polaron band signals the onset of the crossover, it is certainly from the
behaviour of the effective mass that the self-trapping event can be accurately located in the
intermediate region of e–ph couplings [29]. Although precisely in the latter region perturbative
studies traditionally reveal their shortcomings, an analytical method, the modified Lang–Firsov
(MLF) transformation [30], has been developed to overcome the limitations of the standard
Lang–Firsov (LF) [31] approach on which strong coupling perturbation theory is based. As an
enhancement of the polaron mass should be accompanied by a reduction in the polaron size,
the electron–phonon correlation function offers an independent tool to analyse the crossover
through the measure of the spread of the lattice deformation. Since the notion of self-trapping
transition has often assumed different meanings in the literature, we emphasize that our view
of a self-trapped polaron is not that of a localized and immobile object but, rather, of a small
quasiparticle whose different ground state properties have undergone a transition, driven by the
e–ph coupling, at distinct although closely related points in the polaron parameter space [32].
Among these properties, we study in this paper, using the MLF transformation [33, 34], the
polaron mass and the correlation function as obtained from a Holstein Hamiltonian in which
the dispersion of the optical phonon branches is fully accounted for in any dimensionality.
Besides depicting a model more appropriate to physical systems, dispersive phonons represent
a relevant feature of the Holstein model itself as previously shown by one of us [35]. The role
of the intermolecular forces in the crossover of the MLF polarons at different dimensionalities
is a main focus of our investigation. The generalities of the model are given in section 2, while
the results are presented in section 3 both for the polaron mass and for the static correlation
function. Section 4 contains some final remarks.

2. The modified Lang–Firsov phonon basis for the Holstein model

We consider the dimension dependent Holstein Hamiltonian consisting of one electron hopping
term, an interaction which couples the electronic density and the ionic displacements at a given
site and dispersive harmonic optical phonons as

H = −t
∑
〈i j〉

c†
i c j + g

∑
i

ni(b
†
i + bi) +

∑
q

ωqb†
qbq. (1)

The first sum is over z nearest neighbours, c†
i and ci are the real space electron creation and

annihilation operators, ni (=c†
i ci ) is the number operator, and b†

i and bi are the phonon creation
and annihilation operators. b†

q is the Fourier transform of b†
i and ωq is the frequency of the

phonon with vector momentum q.
The standard practice in dealing with the Hamiltonian (1) is to apply the LF transformation

where a phonon basis of fixed displacements (at the electron residing site) is used. Such



Polaron crossover in molecular solids 3599

a choice of phonon basis diagonalizes the Hamiltonian in the absence of hopping. The
hopping term is then treated as a perturbation. However, the LF approach under simple
approximations, e.g. within zero-phonon averaging or zeroth order of perturbation, cannot
describe the retardation between the electron and the lattice deformations produced by the
electron. This retardation induces a spread in the size of the polaron and becomes very
important for weak and intermediate e–ph coupling. The MLF phonon basis, where the
displacements of the oscillators at different sites around an electron are treated variationally,
can describe the retardation and a large to small polaron crossover even within simple
approximations [33, 34]. Recently the convergence of the perturbation series within the LF
and the MLF methods has been studied in a two-site Holstein model for the ground state [30]
as well as for the first excited state [36]. It was found that:

(i) within the MLF method the perturbation corrections are much smaller than those
corresponding to the LF method in the range from weak to intermediate e–ph coupling,

(ii) the convergenceof the perturbation series within the MLF is also much better in that range,
(iii) in the strong coupling limit the MLF phonon basis reduces to the LF basis and the LF

perturbation method works very well in this limit.

The above studies have clearly pointed out that the MLF perturbation method works much
better than the LF method when the entire range of the e–ph coupling is considered.

The MLF perturbation method has also been applied to a many-site Holstein model with
dispersionless phonons in 1D, and the supremacy of the MLF method over the LF method
in predicting the ground state energy and dispersion of the polaron has been observed [37].
For the present case of dispersive phonon we apply the MLF transformation to the dimension
dependent Hamiltonian (1):

H̃ = eR H e−R (2)

where

R =
∑

q

λqnq(b
†
−q − bq),

nq = 1√
N

∑
i

ni e−iq·Ri = 1√
N

∑
k

c†
k+qck

(3)

and λq are the variational parameters which represent the shifts of the equilibrium positions
of the oscillators (quantized ion vibrations) with momentum q. For conventional Lang–Firsov
transformation λq = g/ωq. The MLF transformed Hamiltonian for a single electron case is
obtained as

H̃ = −εp

∑
i

ni − tp
∑

i j

c†
i c j exp

[
1√
N

∑
q

λqb†
q(e

iq·Ri − eiq·R j )

]

× exp

[
− 1√

N

∑
q

λqbq(e
−iq·Ri − e−iq·R j )

]

+
∑

q

ωqb†
qbq +

∑
q

(g − λqωq)nq(b
†
−q + bq) (4)

where

εp = 1

N

∑
q

(2g − λqωq)λq (5)
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is the polaron self-energy and

tp = t exp

[
− 1

N

∑
q

λ2
q

(
1 − γq

z

)]
(6)

is the polaronic hopping. The coordination number z is twice the system dimensionality.

γq =
∑

j

′
eiq·Ri j = 2

∑
i=x,y,z

cos qi

where i and j are nearest neighbour sites. As unperturbed Hamiltonian we choose H0 as

H0 = −εp

∑
i

ni +
∑

q

ωqb†
qbq. (7)

The remaining part of the Hamiltonian (H̃ − H0) in the MLF basis is considered as the
perturbation part. The energy eigenstates of H0 are given by

|φi , {nq}〉 = c†
i |0〉e|nq1 , nq2 , nq3 , . . .〉ph (8)

where i is the electron site and nq1 , nq2 , nq3 are the phonon occupation numbers in the phonon
momentum states q1,q2,q3, respectively. The lowest energy eigenstate of the unperturbed
Hamiltonian has no phonon excitations, i.e. nq = 0 for all q. The ground state has an energy
E0

0 = −εp and is N-fold degenerate, where N is the number of sites in the system. The
perturbation lifts the degeneracy and to first order in t the ground state energy of the 3D-
polaron with momentum k is given by

E0(k) = −εp − tpγk (9)

and the corresponding eigenstate is |k, nq = 0〉 = 1√
N

∑
i eik·Ri c†

i |0〉e|0〉ph.
The second order correction to the ground-state energy of the polaron with momentum k

is given by

E (2)
0 (k) =

∑
k′

∑
{nq}

1∑
q nqωq

|〈{nq},k′|H̃ − H0|k, {0}〉|2. (10)

It is evident that the second order correction has contributions from intermediate states
having all possible phonon numbers, i.e. each nq in equation (10) takes values from zero to
infinity with the condition that nTOT = ∑

q nq � 1.
By minimizing the zone centre ground state energy we get the variational parameters λq:

λq = g

ωq + ztp(1 − γq

z )
(11)

and, by such a choice of λq, the one phonon matrix element between the ground state
|k = 0, {nq = 0}〉 and the first excited state

〈1q,k′|H̃ − H0|k = 0, {0}〉 = δk′,−q
1√
N

[
−ztpλq

(
1 − γq

z

)
+ (g − λqωq)

]
(12)

vanishes. Then, the one phonon excitation process yields no contribution to the second order
correction for the MLF ground state energy. The λq appropriate to the 1D, 2D and 3D systems
are easily obtained by (11).

The static correlation function involving the electron charge at i th site and the lattice
deformation at the i + nth site are given by

χn = 〈ψG|c†
i ci (b

†
i+n + bi+n)|ψG〉/2ḡ〈ni 〉 (13)

where ḡ = N−1 ∑
q(g/ωq) and |ψG〉 denotes the ground state for the polaron with momentum

k = 0. The denominator in equation (13) is used to normalize the correlation function with
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respect to its on-site value in the strong coupling limit. ni is the electron number operator and
〈ni 〉 = 1/N for the one-electron system. While ci and bi are the bare electron and phonon
annihilation operators in the undisplaced oscillator basis respectively, the corresponding
operators in the MLF basis are the annihilation operators for the polaron and that of the
phonon in the variationally displaced oscillator basis. The correlation function is calculated in
the MLF basis within zero phonon averaging.

3. Polaron mass and correlation functions

Previous investigations have pointed out that the Holstein model with a dispersionless spectrum
(ω1 = 0) or with weak intermolecular forces (ω1 � ω0) would predict larger polaron
bandwidths in lower dimensionality against physical expectations [35]. Moreover, as pointed
out by Holstein in his original papers [3], dispersionless phonons would lead to an unphysical
divergent site jump probability for the polaronic quasiparticle [38]. Hence, intermolecular
forces are a key ingredient of the Holstein model.

Numerical analysis [35] has shown that the bandwidths 	Ed grow faster versus the
intermolecular energy ω1 in higher dimensionality d , thus providing a criterion to fix the
minimum ω1 which ensures the validity of the Holstein model. Imposing the inequalities
criterion 	E3D � 	E2D � 	E1D we set the threshold value ω̄1 which turns out to be a
function of the breathing mode energyω0 and of the d-independent e–ph coupling g0 = g/

√
d

(g scales ∝ √
d): thus, at intermediate g0 (�1–1.5, in units ofω0) ω̄1 is �ω0/2, while at strong

g0 (�2) ω̄1 should be at least �2ω0/3 in order to ensure the correct bandwidths trend. On
the other hand, the intermolecular energies encounter the upper bound ω1 < ω0 given by the
value of the coupling energy between the two atoms in the basic unit of the molecular solid.
Moreover, too large ω1 may invalidate strong coupling perturbative treatments of the Holstein
model for 3D systems in fully adiabatic regimes [39].

With this caveat we study the polaron mass both in the Lang–Firsov and in the modified
Lang–Firsov scheme, taking a lattice model in which first neighbours molecular sites interact
through a force constants pair potential. Then, the d-dependent optical phonon spectrum is
given by

ω2
1D(q) = α + γ

M
+

1

M

√
α2 + 2αγ cos q + γ 2

ω2
2D(q) = α + 2γ

M
+

1

M

√
α2 + 2αγ g(q) + γ 2(2 + h(q))

ω2
3D(q) = α + 3γ

M
+

1

M

√
α2 + 2αγ j (q) + γ 2(3 + l(q))

g(q) = cos qx + cos qy

h(q) = 2 cos(qx − qy)

j (q) = cos qx + cos qy + cos qz

l(q) = 2 cos(qx − qy) + 2 cos(qx − qz) + 2 cos(qy − qz)

(14)

where the intramolecular force constantαand the intermolecular first neighbours force constant
γ are related to ω0 and ω1 by ω2

0 = 2α/M and ω2
1 = γ /M , respectively. M is the reduced

molecular mass. In terms of ω0, the dimensionless parameter zt/ω0 defines the adiabatic
(zt/ω0 > 1) and the antiadiabatic (zt/ω0 < 1) regime.

Second order perturbative theory introduces the polaron mass m∗ dependence on the
hopping integral t , hence on the adiabatic parameter, which would be absent in the first order
Lang–Firsov theory. Generally, m∗ can vary with t/ω0 in two ways: m∗ becomes lighter either
by increasing ω0 at fixed t , or by increasing t at fixed ω0. As the mass variation due to ω0 is
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Figure 1. Ratio of the 1D polaron mass to the bare band mass versus e–ph coupling according to
the Lang–Firsov and the modified Lang–Firsov methods. The adiabatic parameter is set at: (a) the
intermediate value, 2t/ω0 = 1; (b) a fully adiabatic regime, 2t/ω0 = 2; (c) an antiadiabatic regime,
2t/ω0 = 0.25. ω0 = 100 meV and ω1 (in units meV) are the intramolecular and intermolecular
energies of the diatomic molecular chain, respectively.

much stronger than that due to t , for a given adiabatic parameter, we may get different mass
values according to the absolute values of ω0 and t . However, for sufficiently strong e–ph
couplings which make the perturbative method applicable, the LF mass changes only slightly
with t , and second order corrections are small unless the intramolecular phonon energies are
low (ω0 < 50 meV) [39]. Hereafter we set ω0 = 100 meV and select the adiabatic parameter
by tuning t .

In figure 1, we plot the ratio of the 1D polaron mass to the bare band mass against the
e–ph coupling calculated both in the Lang–Firsov scheme and in the modified Lang–Firsov
expression.

An intermediate regime 2t = ω0 is assumed in figure 1(a) while the intermolecular energy
spans a range of weak to strong values. The striking different behaviour between the LF
and the MLF mass occurs for intermediate g, while at very strong couplings the MLF plots
converge, as expected, towards the LF predictions. The LF method overestimates the polaron
mass for g ∈ [∼1–2] (according to the value of ω1) and, mostly, it does not capture the rapid
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mass increase found instead in the MLF description. Note that, around the crossover, the
MLF polaron mass is of order ten times the bare band mass in the case ω1 = 60 meV. Large
intermolecular energies enhance the phonon spectrum thus reducing the effective masses in
both figures. In the MLF method, large ω1 tend also to smooth the mass behaviour in the
crossover region.

Going to a fully adiabatic regime (see figure 1(b)) the discrepancies between the LF and
MLF plots are even more pronounced, and the range of e–ph couplings in which the two
methods converge shrinks considerably. There is scarce renormalization in the MLF curves up
to the crossover which is clearly signalled by a sudden although continuous mass enhancement
whose abruptness is significantly smoothed for the largest values of intermolecular energies.
In the antiadiabatic case shown in figure 1(c), the picture changes drastically, and we recover a
nearly coincident mass behaviour in the LF and MLF methods throughout the whole range of
couplings. The convergence is favoured at large ω1. As mentioned above, the LF plots show a
strong resemblance in going from figures 1(a) to (c): in fact, the LF method slightly depends
on the hopping integral in 1D systems with large intramolecular energy. The results we have
displayed so far make us reconsider the concept of self-trapping traditionally indicating an
abrupt, but continuous, transition between an infinite size states at weak e–ph couplings and
a finite (small) size polaron at strong e–ph couplings. According to the adiabatic polaron
theory [11, 40] there is no self-trapping event in 1D as the polaron solution is always the
ground state of the system. Instead, in higher dimensionality a minimum coupling strength is
required to form finite size polarons, hence self-trapped polarons can exist at couplings larger
than that minimum. As a shrinking of the polaron size yields a weight increase, the polaron
mass behaviour is accepted to be the most reliable indicator of the self-trapping transition.
The latter appears to us as a crossover essentially dependent on the degree of adiabaticity of
the system and crucially shaped by the internal structure of the phonon cloud which we have
modelled by tuning the intermolecular forces. We are then led to relocate the self-trapping
event in the parameter space of 1D systems admitting also that finite size polarons can self-trap
if a sudden change in their effective mass occurs for some values of the e–ph couplings in some
portions of the adiabatic regime. As fluctuations in the lattice distortions around the electron
site are included in our variational wavefunction, discontinuities in the polaron mass should
not appear at the onset of the transition [41]. Mathematically we select the crossover points
through the simultaneous occurrence of a maximum in the first logarithmic derivative and a
zero in the second logarithmic derivative of the MLF polaron mass with respect to the coupling
parameter: such inflection points, corresponding to the points of most rapid increase for m∗,
are reported on in figure 2, where the mass ratios are plotted for a wide choice of antiadiabatic
to adiabatic regimes and a sizeable value of ω1 in 1D, 2D and 3D.

Some well known features of the antiadiabatic polaron landscape are confirmed by our
analytical variational model in all dimensionalities:

(i) antiadiabatic polarons are generally heavier than adiabatic ones although, at very strong
couplings, the mass values converge at the Lang–Firsov results, and

(ii) there is no self-trapping in the fully antiadiabatic regime as the electron and the dragged
phonon cloud form a compact unit, a small polaron, also at intermediate e–ph couplings.

Then, the mass increase is smooth in the antiadiabatic regime. Instead, in the more
controversial [42] antiadiabatic to adiabatic transition region, we start to detect the signatures
of the crossover which persist in the fully adiabatic regime and form a line of self-trapping
events whose features however change considerably versus dimensionality. In 1D (figure 2(a)),
the crossover occurs for g values between ∼1.8 and 2.3, and the corresponding self-trapped
masses are of order ∼5–50 times the bare band mass, thus suggesting that relatively light
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Figure 2. The ratio of the modified Lang–Firsov polaron mass to the bare band mass
versus e–ph coupling in (a) 1D, (b) 2D and (c) 3D. A set of 12 zt/ω0 values ranging
from the antiadiabatic to the adiabatic regime is considered. From left to right: zt/ω0 =
0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0. ω0 = 100 meV. The diamonds mark
the occurrence of the self-trapping event.

small polarons can exist in 1D molecular solids with high phonon spectrum. The self-trapped
mass values grow versus g by increasing the degree of adiabaticity, and the incipience of the
self-trapping line is set at the intermediate value 2t/ω0 = 1. We note that these findings are
in good qualitative and quantitative agreement with refined variational results supporting the
existence of self-trapped polarons also in 1D. Although in the deep adiabatic regime we find
a quasi-steplike increase, the 1D polaron mass is a continuous and derivable function of the
e–ph coupling [23].

The 2D lattice introduces some significant novelties in the MLF mass behaviour, as shown
in figure 2(b):

(i) at a given e–ph coupling and adiabaticity ratio, the 2D mass is lighter than the 1D mass
and the 2D LF limit is attained at a value which is roughly one order of magnitude smaller
than in 1D;
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Figure 3. (a) 1D and (b) 2D static correlation functions versus e–ph coupling in the adiabatic
regime, zt/ω0 = 2. ω0 = 100 meV. Two values of intermolecular energies, ω1 = 40 and 80 meV,
have been taken.

(ii) the crossover region is shifted upwards along the g axis with the self-trapping events taking
place in the range g ∼ 2.2–2.6, and the corresponding masses are of order ∼5–10 times
the bare band mass;

(iii) the curve connecting the self-trapping points is parabolic, with an extended descending
branch starting at the intermediate value 4t/ω0 = 1;

(iv) in the deep adiabatic regime, the lattice dimensionality smoothens the mass increase
versus g.

The latter effect is even more evident in 3D, see figure 2(c), as there are no signs of abrupt
mass increase even for the largest values of the adiabatic parameter. At the crossover, 3D
masses are of order ∼5–10 times the bare band mass with the self-trapping points lying in the
range g ∼ 2.5–2.9. At large couplings the effective mass over bare band mass ratio becomes
independent of the t value and converges towards the LF value. In this region (and for the
choiceω1 = 60 meV) the 3D Lang–Firsov mass is one order of magnitude smaller than the 2D
mass. As the coordination number grows versus dimensionality, large intermolecular forces
are more effective in hardening the 3D phonon spectrum, thus leading to lighter 3D polaron
masses than 2D ones.

In figure 3 we plot the correlation functions χ0, χ1 and χ2 in 1D (a) and 2D (b) respec-
tively, as obtained by (13) for the adiabatic regime zt/ω0 = 2 withω0 = 100 meV. Two values,
ω1 = 40 and 80 meV, have been chosen to point out the role of the intermolecular forces in the
transition between a large polaron at weak couplings and a small polaron at strong couplings.
For sufficiently strong g values the LF limit is obtained, i.e. χ0 becomes 1 while χ1 and χ2

become zero, implying that the resulting polaron is an on-site small polaron. The small to large
polaron crossover is manifested by a strong reduction of χ0 along with an enhancement in the
values of χ1 and χ2. By increasing ω1, the crossover is slightly smoothed and shifted upwards
along the g axis. Accordingly,χ1 and (to a lesser extent) χ2 acquire some weight throughout a
larger portion of e–ph coupling values. As a main feature we note that the crossovers indicated
by the correlation functions of the 1D system, for the two selected cases, occur at g/ω0 ∼ 2
and ∼2.35, respectively. These values match the corresponding crossover points extracted by
the polaron mass slopes. In 2D, the self-trapping transition takes place at larger (than in 1D)
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g values, and non-local e–ph correlations persist in the adiabatic polaron up to g/ω0 ∼ 3. The
crossover is generally smooth, and the softening effect of the intermolecular forces is more
pronounced than in the 1D system.

4. Conclusions

We have developed a variational analytical method to study the Holstein polaron problem versus
dimensionality in the entire range of (anti)adiabatic parameters characterizing the molecular
system. The essential role of the phonon dispersion in the Holstein model has been accounted
for, including the intermolecular interactions, by means of a force constant approach. Unlike
the traditional Lang–Firsov scheme, the modified Lang–Firsov method permits us to describe
the fact that, in the intermediate and adiabatic regimes, the lattice deformation does not in-
stantaneously follow the electron motion, thus leading to a spreading in the quasiparticle size.
Under these circumstances we have examined the behaviour of the polaron mass as a function
of the strength of the e–ph coupling, and critically analysed the occurrence of the self-trapping
event signalling a shrinking of the polaron size in real space. This crossover has been also
monitored through the computation of the static e–ph correlation functions which provide a
complementary tool corroborating our conclusions. By varying the adiabatic parameter and
selecting the points of most rapid increase for the effective mass, we have found a set of
self-trapping points originating, in 1D and 2D, in the intermediate regime (zt/ω0 = 1) and
continuing in the fully adiabatic regime. In 3D, the self-trapping events occur at zt/ω0 > 1.
While, in 1D, the curve connecting the inflection points in the adiabatic regime is a mono-
tonic growing function of the e–ph coupling, in 2D and 3D we find distinctive parabola-like
curves whose minima (of order ∼5 times the bare band mass) are located at larger g in higher
d . Hence small polaron formation is favoured in low d whereas very large e–ph couplings
are required to shrink the size of adiabatic polarons in 3D. As intermolecular forces play a
stronger role in more closely packed structures, lattice dimensionality is expected to shape the
polaron behaviour. In fact, our results show that the crossover from large to small polarons is,
in 2D and even more in 3D, smoother than in the case of the 1D adiabatic polaron at a fixed
value of intermolecular energy. After pointing out the quantitative differences in the polaron
mass according to the dimensionality, one should however notice a qualitative similarity in
all dimensions regarding the occurrence of the self-trapping event. Finally we observe that,
although polaron masses become generally lighter in higher d , also in 1D the effective mass
over bare band mass ratio is ∼5 at the crossover when phonons and electrons compete on the
energy scale. Small polarons having mobility properties may therefore be expected in low
dimensional molecular systems with sufficiently strong intermolecular forces.
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